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Constant crunch coordinates for black hole simulations
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We reinvestigate the utility of time-independent constant mean curvature foliations for the numerical simu-
lation of a single spherically symmetric black hole. Each spacelike hypersurface of such a foliation is endowed
with the same constant value of the trace of the extrinsic curvature tensorK. Of the three families ofK-constant
surfaces possible~classified according to their asymptotic behaviors!, we single out a subfamily of singularity-
avoiding surfaces that may be particularly useful, and provide an analytic expression for the closest approach
such surfaces make to the singularity. We then utilize a nonzero shift to yield families ofK-constant surfaces
which ~1! avoid the black hole singularity, and thus the need to excise the singularity,~2! are asymptotically
null, aiding in gravity wave extraction,~3! cover the physically relevant part of the spacetime,~4! are well
behaved~regular! across the horizon, and~5! are static under evolution, and therefore have no ‘‘grid stretching/
sucking’’ pathologies. Preliminary numerical runs demonstrate that we can stably evolve a single spherically
symmetric static black hole using this foliation. We wish to emphasize that this coordinatization produces
K-constant surfaces for a single black hole spacetime that are regular, static, and stable throughout their
evolution.
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I. CONSTANT CRUNCH SURFACES

In this paper, we address a single question: Is ther
numerically viable coordinatization of a Schwarzschild bla
hole spacetime foliated by hypersurfaces of constant~not
necessarily zero! mean extrinsic curvature? In other word
can we coordinatize the Schwarzschild spacetime with c
stant mean extrinsic curvature@Tr(K)5const# hypersurfaces
so as to bound the growth of metric components and t
gradients? We demonstrate here that the single shift free
yields a spacetime metric that is static, and therefore bou
the growth in time of such gradients. A more comple
analysis of the stability of our coordinatization, and a mo
thorough canvassing of the parameter space, will app
elsewhere@1#. Our foliation is consistent with that of Iriondo
et al. @2#, who provided a generic constant mean curvat
~CMC! foliation of the Reissner-Nordstro¨m spacetime for the
purpose of finding trapped surfaces. In this paper we fo
on the utility of CMC slicings for the numerical simulatio
of black holes, in support of the emerging field of gravit
wave astrophysics.

The trace of the extrinsic curvature tensor„Tr(K )5Ka
a

5K… at a point on a spacelike hypersurface measures
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fractional rate of contraction of 3-volume along a unit no
mal to the surface. It represents the amount of ‘‘crunch’’ t
3-surface is experiencing at the point, at a given time. If
the observers throughout a spacelike hypersurface movin
time orthogonal to the surface experience the same am
of contraction per unit proper time, we say that the surfac
a K surface or a ‘‘constant crunch’’ surface. In this paper w
examine foliations of a single spherically symmetric, sta
black hole where each spacelike hypersurface has the s
constant value of the extrinsic curvatureK.

GenericK-surface foliations have found great utility i
the numerical simulation of cosmological spacetimes@3#. In
addition to decoupling the three momentum constraint eq
tions from the Hamiltonian constraint, these surfaces~in the
case of compact orW-model universes! provide a convenient
cosmological time parameter~K, or York, time! @4#. Further-
more, for such cosmological spacetimes one has powe
existence and uniqueness theorems@5,6#. Extensive work
into the characteristics of these surfaces for Schwarzsc
spacetimes has been done by Brillet al. @7#, and foundational
work into their use in numerical relativity was done by D
Eardleyet al. @8# More recently Pervezet al. @9# provided a
foliation partially covering the Schwarzschild spacetime w
K surfaces, withK ranging from2` to `, and Iriondoet al.
@2# provided a generic constant mean curvature foliation
the Reissner-Nordstro¨m spacetime for the purpose of findin
trapped surfaces. In this paper we build upon the work
these investigators by examining the utility of these surfa
for numerical relativity in support of gravity-wave detector

Although surfaces of constantK were thoroughly investi-
gated decades ago, their use in current numerical simulat
©2001 The American Physical Society24-1
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of black holes is conspicuously absent~apart from the use o
maximal (K50) surfaces! @10#. One reason why these slic
ing methods have not been more fully developed is that t
lag in time close in, to avoid crashing into the singulari
while they simultaneously evolve forward normally at t
outer edge of the grid to allow for wave extraction. Th
tension, many fear, will unavoidingly lead to unbound
growth in the metric and extrinsic curvature components
the intermediate region, as is indeed found in maximal s
ing. This computational concern has been referred to by
numerical relativity community as ‘‘grid stretching’’ o
‘‘grid sucking.’’ We show in this paper that a proper choic
of radial shift can yield a constant crunch foliation of
spherically symmetric black hole without such pathologi
In fact, we foliate a Schwarzschild black hole such that
3-metric and extrinsic curvature are both bounded and s
~i.e., unchanging in time!.

To numerically evolve a black hole 3-space in time it
desirable to have a foliation, and its coordinatization, wh
satisfy the following four properties:~1! avoids black hole
singularities or facilitates their excision;~2! possesses as
ymptotically null hypersurfaces to aid in radiation extractio
~3! minimizes steep gradients in the lapse, shift, 3-met
and extrinsic curvature tensor;~4! maximizes the future de
velopment of the initial data for the purpose of gravity-wa
extraction.
As a first step towards achieving these goals for syste
containing multiple black holes, we explore the families ofK
surfaces in the Schwarzschild spacetime, and find a C
foliation satisfying the above properties.

In the next section we construct theK surfaces outside
and inside the horizon. In Sec. III we explore the propert
of the K surfaces, dwelling in particular on their approach
to the singularity. We also examine and illustrate the th
families of K surfaces. In Sec. IV we derive a metric fo
Schwarzschild whose constant time slices areK surfaces. We
restrict our attention to a subfamily ofK surfaces—surface
which, when generalized to the colliding black hole spa
times, support the gravity wave detection problem. We a
present some preliminary numerical simulations us
constant-crunch coordinates. We conclude with general c
ments on the applicability ofK surfaces to numerical calcu
lations of more general black hole space times.

II. CONSTRUCTION OF CONSTANT CRUNCH SURFACES

Over three decades ago Eardley and Smarr@8# carried out
a generic classification of the spacetimes that could be si
lated numerically, and investigated the limitations that
presence of singularities would impose. In their paper th
argued that CMC slicings are particularly useful for nume
cal purposes. In particular, they demonstrated this explic
by constructing numerical solutions to a wide array of d
collapse models. In a similar vein, Brillet al. @7# explored
the nature of CMC slices of the Schwarzschild spacetim
and they also presented some numerical examples. In
present work, we explore the numerical utility of CMC sli
ings in the case of single black hole spacetimes. For the s
of clarity, we will commence with a re-derivation of th
06402
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equations governing the CMC surfaces starting fro
Schwarzschild coordinates. From there, we will explore s
cific properties of the surfaces, paying particular attention
implications for numerical relativity.

We wish to find a spacelike hypersurface in the Schwar
child spacetime such that every point on the surface has
same constant value of the trace of the extrinsic curva
tensor. We have at our disposal the specification of
initial-value data, as well as the freedom to choose the la
and shift throughout the evolution. To begin, let us take
standard coordinate system of a single black hole space
of massM in Schwarzschild coordinates:

ds252B~r !dt21C~r !dr21r 2~du21sin2 udw2!, ~1!

with B(r )5(122M /r ) andC(r )51/B(r ). It will be conve-
nient to treat separately the regions inside and outside of
horizon. We will find that the two are related by an isomet

A. Outside the horizon „rÌ2M …

Outside the horizon, CMC surfaces will be labeled byt
5T(r ) ~Fig. 1!. The requirement that the trace of the extri
sic curvature be constant throughout this surface yields a
order differential equation forT(r ), determined by examin-
ing the behavior of the normals to the surface. The norman
to the spacelike hypersurfaceT is given by

n5N0¹@ t2T~r !#5ntdt1nrdr5N0~dt2T8dr !, ~2!

whereN0 is a normalization constant and primes denote d
ferentiation with respect tor. The normalization is fixed by
demanding that

n•n521 ~3!

5gttntnt1grr nrnr ~4!

5N0
2S 2

1

B
1

1

C
T82D . ~5!

Therefore

FIG. 1. To construct CMC slices, at each point we introduc
unit normal vectorn and the unit tangent vectorj to the surface.
The local light cones are depicted by the light dashed lines.
4-2
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N052
1

AC2BT82
, ~6!

and

nr5
T8

AC2BT82
, ~7!

nt52
1

AC2BT82
. ~8!

The contravariant components of the normal are given b

nr5grr nr5
T8

CAC2BT82
, ~9!

nt5gttnt5
1

BAC2BT82
. ~10!

The trace of the extrinsic curvature is the fractional rate
contraction of 3-volume per unit proper time along the n
mal, namely

K52na
;a52

1

r 2

d

dr
~r 2nr !. ~11!

Substitution ofnr into Eq. ~11! yields a second-order ordi
nary differential equation forT. Integrating this equation, we
find

H5S Br2T8

AC2BT82D 1J, ~12!

with H an integration constant andJ an indefinite integral
given by

J5E r

KABCr2dr5
1

3
Kr 3. ~13!

Along the surface the rate of change of proper timedt with
proper distanceds is related to the slope of the surfaceT,

dt

ds
5AB

C
T8. ~14!

From Eq.~12! we find

S dt

dsD
2

5
~H2J!2

~H2J!21Br4 . ~15!

B. Inside the horizon „rË2M …

Finding theK-constant slices of Eq.~1! within the horizon
is similar to the calculation done in the previous sectio
however, as the roles of time and space coordinates rev
within the horizon, we will find it useful to parametrize ou
06402
f
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;
rse

spacelike surface as a function of coordinatet, and look for
K-constant surfaces of the form~Fig. 1!

r 5R~ t !. ~16!

The normaln to the spacelike hypersurfaceR is given by

n5N0¹„R~ t !2r …5ntdt1nrdr5N0~Ṙdt2dr !, ~17!

with differentiation with respect tot denoted by dots and th
N0 a normalization constant fixed by

n•n521 ~18!

5gttntnt1grr nrnr ~19!

5N0
2S 1

C
2

1

B
Ṙ2D . ~20!

We have therefore

N05
21

ACṘ22B
, ~21!

and

nr5
1

ACṘ22B
, ~22!

nt5
2Ṙ

ACṘ22B
. ~23!

The contravariant components of the normal are given b

nr5grr nr5
1

CACṘ22B
, ~24!

nt5gttnt5
Ṙ

BACṘ22B
. ~25!

From Eq.~11!, we once again find that fixing the trace o
the extrinsic curvature gives us a second-order differen
equation forR(t), namely,

K5
22

CRACṘ2B
2

2CB8Ṙ22B~B81C8Ṙ212CR̈!

2~CṘ22B!3/2
,

~26!

which can be simplified to

KR2Ṙ52
d

dt S BR2

ACṘ22B
D . ~27!
4-3
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Paralleling the approach from the last section, we int
duce an integration constantH and an indefinite integralJ
@given by Eq.~13!#, to obtain the first integral:

H5S BR2

ACṘ22B
D 1J. ~28!

From Eq.~27! we find that the ‘‘proper velocity’’ along the
surface,ds/dt5AC/BṘ, results in the same equation bo
inside and outside of the horizon@Eq. ~15!#. This can be
rewritten as

S ds

dt D 2

511
BR4

~H2J!2 . ~29!

The spacelikeK surfaces obtained from the first integra
Eqs.~15! and ~29!, differ only by an isometry,

T8⇔
1

Ṙ
. ~30!

III. PROPERTIES OF THE K SURFACES

The spatial metric of aK surface outside of the horizon i
given by

ds25dl21r 2dV2 ~31!

5~C2BT82!dr21r 2dV2. ~32!

Within the horizon it becomes

ds25dl21r 2dV2 ~33!

5~CṘ22B!dt21r 2dV2. ~34!

These two expressions differ by the isometry of Eq.~30!.
Using Eq.~15! we can rewrite them in terms ofH andK:

ds25
r 4

~H2J!21Br4 dr21r 2dV2. ~35!

From this we arrive at the scalar curvature of theK surface:

~3!R52
2

3
K21

6H2

r 6 . ~36!

Similarly, by using Eqs.~15! and ~29!, the extrinsic curva-
ture associated with observers moving on world lines
thogonal to theK slices are also expressible in terms ofK
andH:

Kr̂
r̂
5

1

3
K1

2H

r 3 , ~37!

K
û

û
5K

f̂

f̂
5

1

3
K2

H

r 3 . ~38!
06402
-

-

The K surfaces are therefore parametrized by two consta
the trace of the extrinsic curvature tensorK and the constan
of integrationH. In addition one must fix a single point o
the surface,t05T(r 0), which amounts to setting a tim
translation parameter. As can be seen in Eqs.~36!–~38!, the
constantH controls the variation of the intrinsic and extrins
curvatures over theK surface.

To elucidate the nature of theK surfaces, we numerically
integrate Eqs.~15! and~29!. We find that within the horizon
there are three classes ofK-constant surfaces, differentiate
by their asymptotic behavior. The singularity-singularity su
faces~SS! begin at the singularity aligned with the null su
face, reach up towards the horizon, and then fall back, rea
ing the singularity along the null cone. The horizon-horiz
surfaces ~HH!, which we have also dubbed ‘‘horizon
hugging’’ surfaces, asymptote to the horizon~r→2M for
utu→` in Schwarzschild!, dipping down towards the singu
larity in between. This feature was previously remarked up
by Brill et al. @7#. The asymptotes converge toward a n
surface at the horizon. Finally, the horizon-singularity~HS!
surfaces begin at the horizon, and asymptote in to the sin
larity. Representative surfaces for the valueK520.1 are
shown in Fig. 2. We integrate the HH and HS surfaces acr
the horizon into the regionr .2M by imposing continuity of
the surface and its first derivative at the horizon. Becaus
the isometry, Eq.~30!, the surfaces outside of the horizon a
characteristically similar to those on the inside; in particul
both sets are null at their asymptotes.

We have chosen to use the acronym HH for the horiz

FIG. 2. An example of the three families of spacelikeK surfaces
for K520.1. The first row~HH! depicts a representative horizon
to-horizon surface usingH521.25, which corresponds toRmin

'1.816. This spacelike hypersurface is represented both
Schwarzschild coordinates~left column! and in Kruskal-Szekeres
coordinates~right column!. The middle two graphs are the horizon
to-singularity ~HS! surfaces usingH521.43. The bottom two
graphs represents a typical singularity-to-singularity~SS! surface.
We have usedH521.25 to generate this SSK surface. The HH
and SS surfaces are close to their critical radii (Rc'1.5646) and
therefore appear flattened, as described in the text.
4-4
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FIG. 3. Phase space diagra
of the classification ofK surfaces.
The K surfaces have been class
fied into three groups according t
their asymptotic behavior~see
text!. Which class a particular sur
face falls into depends upon th
values ofK and H, as detailed in
the figure. For the purposes of nu
merics, the surfaces of interest a
to be found in the ‘‘future HH and
SS’’ wedge, withK,0 ~see Sec.
III !.
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ts,
to-horizon hypersurfaces, in lieu of referring to them
‘‘regular’’ hypersurfaces@7#, as each of the three types ofK
surfaces are, in a strict sense, regular. In particular, e
surface asymptotes to a null surface, be it at the singularit
the horizon. Observers on such a surface, or more precis
observers that are time synchronized throughout the surf
are never seen crossing the horizon, nor do they ever re
the singularity! Outside the horizon, every HH and HSK
surface (KÞ0) asymptotes for larger to null infinity. K
surfaces corresponding to positive values ofK asymptote to
past null infinity, and asymptote to future null infinity fo
K,0.

To gain a qualitative understanding of theK-constant fo-
liation, it is useful to analyze Eq.~29! as an energy conser
vation equation for a particle of unit total energy (E51)
moving in the potential

V~r !5

2S 12
2M

r D r 4

S H2
1

3
Kr 3D 2 . ~39!

By using this energy equation we can determine the clo
approach to the singularity,Rmin , of a given HHK-constant
surface. Two conditions must be satisfied to determineRmin .
First, the closest approach occurs whenṘ5(ds/dt)50,
which is equivalent to demanding

V~Rmin!51. ~40!

This condition leads to a sixth-order polynomial inRmin :

K2

9
Rmin

6 1Rmin
4 22S M1

HK

3 DRmin
3 1H250. ~41!

Second, the solution for this surface atR(tmin)5Rmin must be
concave, so as to rule out the SS surfaces~which bend to-
wards the singularity rather than the horizon!. This is en-
forced by demanding
06402
s
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st

R̈~ tmin!uṘ~ tmin!50

5

~Rmin22!F2312Rmin1KRmin
2 A 2

Rmin
21G

Rmin
3 >0. ~42!

The solution of these two conditions, as shown in Fig.
gives rise to the emergence of two critical values forH,
namely H6 , for a given value ofK. In addition, an HH
surface can be made to approach arbitrarily close to the
gularity at r 50 by choosing an appropriately large positiv
value ofK. Negative values ofK tend to ‘‘hug the horizon.’’

For fixedK andH we know how to compute how closel
a CMC surface comes to the singularity. But, for a giv
value of K, what value ofH gives the closest overall ap
proach to the singularity? We can determine the critical v
ues for R and H, given by Rc and H6 , respectively, by
looking at the point where the first and second time deri
tives ofR(t) vanish.H2 occurs along the lower boundary o
the contour plot in Fig. 3, and corresponds to theK surface
that reaches down the furthest towards the singularity fo
given value ofK. The vanishing ofṘuṘ50 leads to the fol-
lowing equation forRc :

~Rc22!S 2312Rc1KRc
2A 2

Rc
21D 50, ~43!

which can be rewritten as a fourth order polynomial inRc

K2Rc
422K2Rc

314Rc
2212Rc1950. ~44!

One must take care in examining the roots of this equat
as there are more solutions to Eq.~44! than there are for Eq
~43!. Nevertheless this equation gives two distinct real roo
depending on the sign ofK:
4-5
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RcuK.05
1

2
2

1

2
A32

8

K22x1
2

Ax
1

16

K2Ax
1

Ax

2
,

~45!

RcuK,05
1

2
1

1

2
A32

8

K22x1
2

Ax
1

16

K2Ax
1

Ax

2
,

~46!

where

j[321108K21243K4127K2A16156K2181K4,
~47!

x[12
8

3K2 1
16136K2

3 21/3K2j1/31
21/3j1/3

3K2 . ~48!

WhenK50 we see from Eq.~43! thatRc5 3
2 . The regularK

surfaces are thus bounded between the horizon atR152M

andR25RcM . Using Eq.~28!, and settingṘ50, we obtain,
for the case of a black hole in Schwarzschild coordinate

H65
B6R6

2

A2B6

1
KR6

3

3
, ~49!

with

B65S 12
2M

R6
D . ~50!

We therefore have

H15
8

3
M3K. ~51!

For large values ofuKu one can show that the critical valu
of R, R2 , depends upon the sign ofK. In particular,

Rc→H 22
1

8
K22 for K!21,

S 9

4D 1/3

K22/3 for K@1.

~52!

This in turn gives the following asymptotic values forHm :

H2→H 2
8

3
K2

1

2K
for K!21,

29

2K
for K@1.

~53!

IV. CONSTANT CRUNCH COORDINATES: A SPACE-
TIME METRIC FOR A K-SURFACE FOLIATION OF THE

SCHWARZSCHILD BLACK HOLE

A number of features of theK-constant surfaces presente
in the previous sections seem particularly well suited to
numerical analysis of generic black hole spacetimes. F
the surfaces asymptote to a null surface, making them ef
06402
e
t,
c-

tive for gravity wave extraction. Second, theK surfaces natu-
rally avoid the crushing singularity. Finally, for large neg
tive values ofK the surfaces ‘‘hug the horizon.’’ This las
feature, illustrated in Fig. 4, allows one to focus attention
the region relevant for gravity wave generation—the reg
outside the horizon.

In this section we generate aK-constant foliation for the
Schwarzschild black hole that, in addition to the propert
just mentioned, also has regular and static metric and ex
sic curvature components. To generate thisK-constant slic-
ing we use the coordinate transformation

t̄ 5t2T~r !, ~54!

r5r . ~55!

Under this transformation, the metric from Eq.~1! becomes

ds252S 12
2M

r
D d t̄2

12
~J2H !

A~H2J!21S 12
2M

r
D r4

d t̄dr

1
r4

~H2J!21S 12
2M

r
D r4

dr21r2dV2. ~56!

The constantt̄ slices of this metric areK-constant surfaces. I
is to be noted that Eq.~56! agrees with Eq.~53! of Iriondo
et al. ~for the case of constantK and vacuum! @2#. However,
in order to regularize thegrr metric component at the throa
we add the isotropiclike radial transformation@11#,

r̄ 5
1

2 S 2
1

2
Rmin1r1A2Rminr1r2D , ~57!

with Rmin the minimum coordinate location of the throa
given by Eq.~41!. This coordinate representation of a bla
hole spacetime provides a foliation withK-constant,
H-constant spacelike hypersurfaces. Each hypersurfac
metrically equivalent to all others—the surfaces are indep

FIG. 4. Critical value of Rc5R2 as a function ofK for
Schwarzschild coordinates andM51. One can readily see that th
K surface hugs the horizon for large negative values ofK.
4-6
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dent of t̄ , and hence static. In addition, the hypersurfaces
asymptotically null@T8(r )→1 as r→`#. Furthermore, the
lapse, the shift, and all of the 3-metric and extrinsic curvat
components are regular and well behaved, as illustrate
Fig. 5.

In addition to restricting ourselves to the singularit
avoiding family ~HH! of K surfaces, two additional condi
tions on theK surfaces are demanded by the nature of
problem—the eventual simulation of the gravity-wave em
sion from two interacting black holes. First, the foliatio
must asymptote at larger̄ to future null infinity. Therefore
we must restrict our attention to negative values for the tr

FIG. 5. The radial behavior of the various components of
space-time metric@Eq. ~56!#, under the isotropiclike transformatio

given in Eq. ~57!, for M51, K520.1, H521.0, and R̄min

'0.479 22. From upper left to lower right we plot the radial met
component (gr̄ r̄), lapse (ā), radial shift (b r̄), diagonal components

of the extrinsic curvature tensor~Kr̄
r̄ andK

ū

ū
5K

f̄

f̄
!, and in the lower

right frame the trace of the extrinsic curvature tensor (K5Kr̄
r̄1K

ū

ū

1K
f̄

f̄
) as a consistency check. All of the functions are regular a

well behaved. The growth of the lapse and shift for larger̄ is ex-
pected, as the surfaces become asymptotically null. We show
exploded view of the behavior of the radial shift near the throa
emphasize that the shift changes sign and becomes positive b

reachingr̄ 5R̄min .
06402
re
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of the extrinsic curvature tensorK. Second, we require tha
such negativeK hypersurfaces enter the future singular
region. This will ensure proper coverage of the relevant
gion just above the future horizon, which is precisely whe
the gravity waves are produced. However, we expect
initial-data formulation for such surfaces to be involved, a
this may guide our choices even more systemically. The
additional requirements limit us to the relatively narro
wedge of Fig. 3, formed by restricting to the ‘‘future HH an
SS’’ shaded region withK,0.

A representative constant-crunch foliation generated
Eq. ~56! is shown in Fig. 6. The avoidance of ‘‘grid stretch
ing’’ is accomplished by a suitable choice of shift vector. T
illustrate the nonzero shift we show theK521, H'23.11
foliation of Schwarzschild in Fig. 7, with the explicit mis
alignment of ther 5const line segment and the normal ve
tor.

Finally, we describe several preliminary numerical e
periments usingK surfaces. A full treatment of a single blac
hole usingK-constant foliations will be presented elsewhe
@1#. Here we present several sample evolutions demons
ing the utility of constant mean curvature slicings. Figure
and 9 display results from the simplest possible test
K-constant foliation of the Schwarzschild geometry; the d
main is taken to be a thin shell close to the horizon~in this
caser P @1,5#!, analytic Dirichlet conditions are applied a
both boundaries of the computational domain, and anal
lapse and shift conditions obtained from Eqs.~56! and ~57!
are used. The figures represent the singularity-avoiding fo
tion K521 andH523, for which the evolution was found
to be stable and accurate over very long time scales. U
50 grid points, the code successfully ran beyondt
550 000M while maintaining high accuracy. The fraction
error in the metric components was typically 1–2 %.

Figure 8 shows the convergence of the mean fractio
error in the metric componentā5Agr̄ r̄ as a function of time.
Each curve has been rescaled by a factor of 4p, where the
number of grid points is given by 400/2p, with p50,1,2,3.
For t.2 the solution is approximately second order accura
Initially, noise generated on the inner boundary causes fl
tuations whose magnitude is largely independent of the n
ber of grid points. Figure 9 shows snapshots of the Ham
tonian constraint at various times in the evolutio
Qualitatively, a wave which is triggered by truncation err
is seen to propagate outwards from the inner boundary.
amplitude reduces rapidly, before growing once more as
reflected off the outer boundary. The magnitude and spee
propagation of the wave quickly decay as the wave mo

e

d

an
o
ore
a-
w

es.
FIG. 6. The constant crunch coordinate foli
tion of the Schwarzschild spacetime. We sho
the foliation generated by Eq.~56! for M51, K
520.1, H521.25, and Rmin'1.816, in
Schwarzschild and Kruskal-Szekeres coordinat
4-7
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FIG. 7. The nonzero shift in
the constant-crunch coordinatio
of the Schwarzschild spacetime
We show a foliation generated
by Eq. ~56! for M51, K521,
H'23.11, and Rmin'1.9. We
show ther 5const line segment a
a point on one of the surfaces, to
gether with the inward-pointing
normal vector. The misalignmen
of these two line segments indi
cates the nonzero shift in thi
static coordinatization. A magni-
fied view of the two line segments
is shown in the bottom panel.
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back into the domain, leaving a static solution which is sta
beyond t550 000M . The numerical error which initially
propagates through the domain is caused entirely by the
lytic Dirichlet boundary conditions, and can be largely elim
nated by the use of more realistic conditions@1#.

The numerical runs presented here evolve aK521
singularity-avoiding hypersurface that asymptotes to null
finity, entering the past singularity region. This is not of t
class ofK surfaces emphasized in this paper for use in
merical relativity. Ideally, we would have preferred prese
ing the evolution of aK521 HH surface that enters th
06402
e

a-

-

-
-

future singularity region. However, we were unable to fi
an HH surface in the future singularity region that evolv
stably using the naive Dirichlet boundary conditions a
analytic lapse and shift conditions. Nevertheless, we h
evolved such surfaces stably by incorporating~1! area lock-
ing shift conditions,~2! isometry conditions at the throat, an
~3! an outgoing boundary condition based on the differen
between the numeric and analytic solutions. These nume
results, and the corresponding stability analysis, are
within the scope of this paper and will be presented el
where@1#.
of
f
e-

h
-

-

d
f

ully
FIG. 8. A numerical example: convergence
the radial metric component for the evolution o
an HH surface spanning the past singularity r
gion and reaching positive null infinity. We show
the time evolution of a single black hole wit
M51, K521, H523, and plot the mean frac
tional error in the radial metric componentā
5Agr̄ r̄ . Results are shown for four different reso
lutions, N5400/2p (p50,1,2,3), where each
curve has been rescaled by a factor of 4p. For t
.2 the solution displays approximately secon
order convergence, with a fractional error o
around 0.1% forN5200. Long term evolution is
stable, and the system has been successf
evolved beyondt550 000M .
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CONSTANT CRUNCH COORDINATES FOR BLACK HOLE . . . PHYSICAL REVIEW D 63 064024
V. FROM ONE BLACK HOLE TO TWO SPINNING BLACK
HOLES

In this paper we considered a static spacetime metric
the Schwarzschild black hole, with spacelike hypersurfa
of constant~not necessarily zero! value of the trace of the
extrinsic curvature tensor. This slicing provides a natu
generalization of the maximal slicing scheme currently
use in some numerical approaches to the binary black
problem.

An essential feature of ourK-constant metric is a spatiall
varying radial shift vector, which allows the surfaces
avoid the singularity while evading the grid stretching pro
lems often encountered with other metrics. Work is
progress to develop a geometric handle on our shift co
tion, akin to that of the ‘‘minimal distortion’’ shift often
discussed. The inner and outer boundary conditions are
particularly convenient. In the inner regions, the horiz
hugging feature of theK slices, together with their regularity
may remove the need to excise the grid within the appa
horizon, thus providing a natural ‘‘boundary without
boundary’’ avoidance of the singularity. In addition, at t
outer boundary the surfaces are asymptotically null, wh
may aid in gravity wave extraction.

In examining the characteristics of theK slices we re-
viewed the three families ofK surfaces, including the
horizon-to-singularity~HS! surfaces, as well as the more f
miliar horizon-to-horizon~HH! and singularity-to-singularity
~SS! surfaces. All three families of surfaces either asympt
to the singularity, or to spatial infinity along a null surfac
Thus the family of observers that make up such a foliat

FIG. 9. Snapshots of the Hamiltonian constraint. For the sa
parameter choices as in Fig. 8 we display the Hamiltonian c
straint during the early stages of evolution. A wave generated
truncation error at the inner boundary propagates outwards is
flected by the outer boundary back into the domain and then rap
decays. No further evolution is seen in the Hamiltonian constr
after t'5.
06402
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never ‘‘observe’’ the surfaces reach the singularity. This s
gests a possible payoff in using the HS surfaces in the e
lution of black hole spacetimes, as there is no danger of
surface reaching the singularity. Just as there are nat
boundary conditions which ‘‘freeze out’’ gravitational radia
tion as it progresses to null infinity, so too can we exp
boundary conditions where the dynamic space freezes ou
it approaches the singularity. Are there such natural bou
ary conditions at the future singularity? It would be wort
while to investigate such asymptotically null boundary co
ditions at the singularity of an HS surface.

The future utility of numerical simulations of black hol
spacetimes hinges in large part on a suitable choice of c
dinates for the initial data, and on the particular evolution
these coordinates through the four lapse and shift conditio
These conditions are the only handles by which to man
the growth of the metric and curvature components dur
evolution. It is through judicious choices of lapse and sh
that one is able to effectively enable singularity avoidan
and allow for efficient extraction of gravitational radiatio
The simplistic example presented here may provide so
guidance as to how to proceed in the more general casK
surfaces in the generic two black hole problem can be
pected to preserve the singularity-avoidance horizon hugg
behavior, as well as remain asymptotically null at the bou
aries. It remains to be seen what shift vectors are require
manage the growth of the intrinsic and extrinsic properties
the metric in the more general case, though the const
crunch shift presented here is a natural starting point.

We are currently pursuing three avenues towards furth
ing and generalizing the work presented here. First, we
analyzing the stability of this coordinatization to small pe
turbations. Second, we are using the (111)-dimensional
code discussed in the last section to examine a greater
tion of the parameter space of initial data, so as to fu
explore the numerical stability of the slicing. From our pr
liminary numerical investigations, we expect to be able to
a full spacetime ‘‘evolution’’ of Schwarzschild, and have
run stably and accurately for extended periods of time ove
wide range ofH-K parameter space. Finally, we are analy
ing the Oppenheimer-Snyder collapse in suchK slicings, fol-
lowing the lead of Eardley and Smarr@8#, as this will further
test our slicing in a nonstatic setting@12#.

ACKNOWLEDGMENTS

We wish to acknowledge the Los Alamos National Lab
ratory LDRD/ER program for financial support. W.A.M
wishes to thank the Institute for Theoretical Physics at UC
for providing a stimulating working environment in which t
complete part of this research. D.E.H. was supported in
by the National Science Foundation under Grant N
PHY9907949 to the ITP. P.L. was supported in part by N
grants PHY9800973 and PHY9800970. We wish to tha
Richard Matzner for advice on handling the coordinate a
biguity at the throat, and Niall O´ Murchadha and David
Bernstein for useful discussions. We are especially grat
to John A. Wheeler for encouraging us to examine th
slices in the context of the numerical treatment of black h
spacetimes.

e
-
y
e-
ly
t

4-9



. s.

.
and

ADRIAN P. GENTLE et al. PHYSICAL REVIEW D 63 064024
@1# A. P. Gentle, D. E. Holz, P. Laguna, W. A. Miller, and D
Shoemaker~in preparation!.

@2# M. Iriondo, E. Maleo, and N. O´ . Murchadha, Phys. Rev. D54,
4792 ~1996!.

@3# J. Centrella and J. Wilson, Astrophys. J., Suppl. Ser.54, 229
~1984!.

@4# J. A. Wheeler, Int. J. Mod. Phys. A3, 2207~1988!.
@5# F. J. Tipler and J. E. Marsden, Phys. Rep.66, 109 ~1980!.
@6# F. J. Tipler and J. D. Barrow, Mon. Not. R. Astron. Soc.216,

395 ~1985!.
06402
@7# D. R. Brill, J. M. Cavallo, and J. A. Isenberg, J. Math. Phy
21, 2789~1978!.

@8# D. Eardley and L. Smarr, Phys. Rev. D19, 2239~1979!.
@9# A. Pervez, A. Qadir, and A. Siddiqui, Phys. Rev. D51, 4598

~1995!.
@10# M. Alcubierre, G. Allen, B. Bruegmann, T. Dramlitsch, J. A

Font, P. Papadopoulos, E. Seidel, N. Stergioulas, W. Suen,
R. Takahashi, Phys. Rev. D62, 044034~2000!.

@11# R. Matzner~private communication!.
@12# K. Thorne~private communication!.
4-10


