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We reinvestigate the utility of time-independent constant mean curvature foliations for the numerical simu-
lation of a single spherically symmetric black hole. Each spacelike hypersurface of such a foliation is endowed
with the same constant value of the trace of the extrinsic curvature tEn&rthe three families oK-constant
surfaces possibleclassified according to their asymptotic behavipvee single out a subfamily of singularity-
avoiding surfaces that may be particularly useful, and provide an analytic expression for the closest approach
such surfaces make to the singularity. We then utilize a nonzero shift to yield familkesofstant surfaces
which (1) avoid the black hole singularity, and thus the need to excise the singul@®itsre asymptotically
null, aiding in gravity wave extraction3) cover the physically relevant part of the spacetirdg,are well
behavedregula) across the horizon, ar8) are static under evolution, and therefore have no “grid stretching/
sucking” pathologies. Preliminary numerical runs demonstrate that we can stably evolve a single spherically
symmetric static black hole using this foliation. We wish to emphasize that this coordinatization produces
K-constant surfaces for a single black hole spacetime that are regular, static, and stable throughout their

evolution.
DOI: 10.1103/PhysRevD.63.064024 PACS nunifer04.25.Dm, 04.70.Bw, 95.30.Sf
I. CONSTANT CRUNCH SURFACES fractional rate of contraction of 3-volume along a unit nor-

mal to the surface. It represents the amount of “crunch” the
In this paper, we address a single question: Is there &-surface is experiencing at the point, at a given time. If all
numerically viable coordinatization of a Schwarzschild blackthe observers throughout a spacelike hypersurface moving in
hole spacetime foliated by hypersurfaces of constaot time orthogonal to the surface experience the same amount
necessarily zepomean extrinsic curvature? In other words, of contraction per unit proper time, we say that the surface is
can we coordinatize the Schwarzschild spacetime with cona K surface or a “constant crunch” surface. In this paper we
stant mean extrinsic curvatufegr(K) = consi hypersurfaces examine foliations of a single spherically symmetric, static
so as to bound the growth of metric components and theiblack hole where each spacelike hypersurface has the same
gradients? We demonstrate here that the single shift freedononstant value of the extrinsic curvatufe
yields a spacetime metric that is static, and therefore bounds GenericK-surface foliations have found great utility in
the growth in time of such gradients. A more completethe numerical simulation of cosmological spacetirf@&s In
analysis of the stability of our coordinatization, and a moreaddition to decoupling the three momentum constraint equa-
thorough canvassing of the parameter space, will appedions from the Hamiltonian constraint, these surfageshe
elsewherg1]. Our foliation is consistent with that of Iriondo case of compact di-model universesprovide a convenient
et al. [2], who provided a generic constant mean curvaturecosmological time parametéK, or York, time [4]. Further-
(CMC) foliation of the Reissner-Nordstmospacetime for the more, for such cosmological spacetimes one has powerful
purpose of finding trapped surfaces. In this paper we focusxistence and uniqueness theoreffs]. Extensive work
on the utility of CMC slicings for the numerical simulation into the characteristics of these surfaces for Schwarzschild
of black holes, in support of the emerging field of gravity- spacetimes has been done by Betllal.[7], and foundational
wave astrophysics. work into their use in numerical relativity was done by D.
The trace of the extrinsic curvature teng@r(K)=K3  Eardleyet al.[8] More recently Perveet al.[9] provided a

=K) at a point on a spacelike hypersurface measures thiliation partially covering the Schwarzschild spacetime with

K surfaces, wittK ranging from—o to «, and Iriondoet al.

[2] provided a generic constant mean curvature foliation of

*Email address: apg@lanl.gov the Reissner-Nordstno spacetime for the purpose of finding
"Email address: deholz@itp.ucsb.edu trapped surfaces. In this paper we build upon the work of
*Email address: kheyfets@math.ncsu.edu these investigators by examining the utility of these surfaces
SEmail address: pablo@astro.psu.edu for numerical relativity in support of gravity-wave detectors.
IEmail address: wam@Ianl.gov Although surfaces of constatt were thoroughly investi-
TEmail address: deirdre@astro.psu.edu gated decades ago, their use in current numerical simulations
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of black holes is conspicuously abséapart from the use of ; 4
maximal (K=0) surfaces[10]. One reason why these slic-
ing methods have not been more fully developed is that they =R
lag in time close in, to avoid crashing into the singularity,
while they simultaneously evolve forward normally at the
outer edge of the grid to allow for wave extraction. This
tension, many fear, will unavoidingly lead to unbounded
growth in the metric and extrinsic curvature components in
the intermediate region, as is indeed found in maximal slic-
ing. This computational concern has been referred to by the
numerical relativity community as “grid stretching” or
“grid sucking.” We show in this paper that a proper choice
of radial shift can yield a constant crunch foliation of a >
spherically symmetric black hole without such pathologies. r
In fact, we foliate a Schwarzschild black hole such that the g 1. To construct CMC slices, at each point we introduce a
3-metric and extrinsic curvature are both bounded and statignit normal vectom and the unit tangent vectds to the surface.
(i.e., unchanging in time The local light cones are depicted by the light dashed lines.

To numerically evolve a black hole 3-space in time it is
desirable to have a foliation, and its coordinatization, Whic%quations governing the CMC surfaces Starting from
satisfy the following four propertiesil) avoids black hole  Schwarzschild coordinates. From there, we will explore spe-
singularities or facilitates their excisiori2) possesses as- cific properties of the surfaces, paying particular attention to
ymptotically null hypersurfaces to aid in radiation extraction;implications for numerical relativity.
(3) minimizes steep gradients in the lapse, shift, 3-metric, e wish to find a spacelike hypersurface in the Schwarzs-
and extrinsic curvature tensd@) maximizes the future de- child spacetime such that every point on the surface has the
velopment of the initial data for the purpose of gravity-wavesame constant value of the trace of the extrinsic curvature
extraction. tensor. We have at our disposal the specification of the
As a first step towards achieving these goals for systemmitial-value data, as well as the freedom to choose the lapse
containing multiple black holes, we explore the familiekof and shift throughout the evolution. To begin, let us take the
surfaces in the Schwarzschild spacetime, and find a CMGtandard coordinate system of a single black hole space time

foliation satisfying the above properties. of massM in Schwarzschild coordinates:
In the next section we construct thé surfaces outside

and inside the horizon. In Sec. lll we explore the properties  ds?=—B(r)dt?>+ C(r)dr2+r?(d6>+sir? 6de?), (1)

of the K surfaces, dwelling in particular on their approaches

to the singularity. We also examine and illustrate the thregvith B(r)=(1—2M/r) andC(r)=1/B(r). It will be conve-
families of K surfaces. In Sec. IV we derive a metric for hient to treat separately the regions inside and outside of the
Schwarzschild whose constant time sliceskurfaces. We horizon. We will find that the two are related by an isometry.
restrict our attention to a subfamily &f surfaces—surfaces

which, when generalized to the colliding black hole space A. Outside the horizon (r>2M)

times, support the gravity wave detection problem. We also : : .
present some preliminary numerical simulations using_ Outside the horizon, CMC surfaces will be labeled thy

constant-crunch coordinates. We conclude with general com-. T(r) (Fig. 1). The requirement that the trace of the extrin-

ments on the applicability ok surfaces to numerical calcu- sic curvature be constant throughout this surface yields a first

lations of more general black hole space times order differential equation fof (r), determined by examin-
' ing the behavior of the normals to the surface. The nommal

to the spacelike hypersurfadeis given by

r=2M

A

1. CONSTRUCTION OF CONSTANT CRUNCH SURFACES
N=NgV[t—=T(r)]=ndt+ndr=Ng(dt—=T'dr), (2)

Over three decades ago Eardley and Sri@rcarried out
a generic classification of the spacetimes that could be simwhereNy is a normalization constant and primes denote dif-
lated numerically, and investigated the limitations that theferentiation with respect to. The normalization is fixed by
presence of singularities would impose. In their paper theylemanding that
argued that CMC slicings are particularly useful for numeri-

cal purposes. In particular, they demonstrated this explicitly n-n=-1 ()
by constructing numerical solutions to a wide array of dust "

collapse models. In a similar vein, Brit al. [7] explored =g"'nin+g''nn; 4
the nature of CMC slices of the Schwarzschild spacetime,

and they also presented some numerical examples. In the —N2< _i_’_i_l_,z) ®)
present work, we explore the numerical utility of CMC slic- 0 B C '

ings in the case of single black hole spacetimes. For the sake
of clarity, we will commence with a re-derivation of the Therefore
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1
Np=— —, 6
N ©
and
T (7
n,=——,
. tS)
n=— ——.
The contravariant components of the normal are given by
r rr T,
N ©
t tt 1
n"=g nt—ﬁ. (10)

The trace of the extrinsic curvature is the fractional rate of

contraction of 3-volume per unit proper time along the nor-
mal, namely

1
I’2

| o

K=-n®,=— (r2n"). (11

o

r

Substitution ofn" into Eq. (11) yields a second-order ordi-
nary differential equation fof. Integrating this equation, we
find

Br2T’
—|+J
Jc—BT?

with H an integration constant antlan indefinite integral
given by

(12

r 1
J=f K\/BCerr=§Kr3. (13

Along the surface the rate of change of proper tidmewith
proper distancelsis related to the slope of the surfate

dr B_,
From Eq.(12) we find
dr\?  (H-J)? L
ds/ (H-J)%+Br% (15

B. Inside the horizon (r<2M)

Finding theK-constant slices of Eq1) within the horizon
is similar to the calculation done in the previous section;

however, as the roles of time and space coordinates reverse

within the horizon, we will find it useful to parametrize our

PHMCAL REVIEW D 63 064024

spacelike surface as a function of coordingtand look for
K-constant surfaces of the for(fig. 1)

r=R(t). (16)
The normaln to the spacelike hypersurfageis given by
n=N,V(R(t)—r)=n,dt+n,dr=Ng(Rdt—dr), (17

with differentiation with respect tbdenoted by dots and the
N, a normalization constant fixed by

n-n=-1 (18
=g"'nne+gnen, (19
1 1.
N2 T T2
—NJC BR). (20)
We have therefore
-1
No=—= , (22)
CR’-B
and
1
nl‘: - ’ (22)
CR*-B
-R
ny= - (23
CR*-B

The contravariant components of the normal are given by

1
n'=g"'n=——, (24)
CVCR?*-B
t tt R
n=g'n=——. (25)
BVCR?—-B

From Eq.(11), we once again find that fixing the trace of
the extrinsic curvature gives us a second-order differential
equation forR(t), namely,

-2 2CB'R?-B(B'+C’'R?+2CR)
“ crvor B 2(CR-B)*2
(26)
which can be simplified to
KR?R=— E(B—RZ) . (27)

064024-3



ADRIAN P. GENTLE et al. PHYSICAL REVIEW D 63 064024

Paralleling the approach from the last section, we intro- Schwarzschild Kruskal-Szekeres
duce an integration constaht and an indefinite integral 2 ' T ;
[given by Eq.(13)], to obtain the first integral: :2 i i
HH +~ r 7 >
BR2 5r k—__
H=| ——| +J. (28) °L ———
7 ’C R2—B o 1 2 3 4 5
20 T T T
16
From Eq.(27) we find that the “proper velocity” along the 12

surface,ds/d7= \/C/BR, results in the same equation both "
inside and outside of the horizdig. (15)]. This can be
rewritten as

ds

ar

The spacelikK surfaces obtained from the first integrals,
Egs.(15) and(29), differ only by an isometry,

t
Shon®
tl
|||{l/l 1
v

o
N
w
S
(4]

2—14— BR' 29 %
T H-0) (29) ss -

r u

1 FIG. 2. An example of the three families of spaceliksurfaces
Te—. (30 for K=—0.1. The first rotm{HH) depicts a representative horizon-
R to-horizon surface usingd =—1.25, which corresponds t8,,

~1.816. This spacelike hypersurface is represented both in
Schwarzschild coordinategeft column and in Kruskal-Szekeres
coordinategright column. The middle two graphs are the horizon-
The spatial metric of & surface outside of the horizon is to-singularity (HS) surfaces usingd=—1.43. The bottom two

Ill. PROPERTIES OF THE K SURFACES

given by graphs represents a typical singularity-to-singula(®p surface.
We have usedd = —1.25 to generate this S& surface. The HH
ds’=dl?+r2dQ? (31)  and SS surfaces are close to their critical raél€1.5646) and
therefore appear flattened, as described in the text.
_ 1234124 12402
=(C=BTdri+r Q= (32) The K surfaces are therefore parametrized by two constants:
Within the horizon it becomes the trace of the extrinsic curvature tengoand the constant
of integrationH. In addition one must fix a single point on
d<2=dI2+r2d02 (33)  the surface,to=T(ro), which amounts to setting a time
translation parameter. As can be seen in E86.—(38), the
— (CR2—B)dt?+ r2d02, (34) constanH controls the variation of the intrinsic and extrinsic

curvatures over th& surface.

To elucidate the nature of the surfaces, we numerically
integrate Eqs(15) and(29). We find that within the horizon
there are three classes Kfconstant surfaces, differentiated

r4 by their asymptotic behavior. The singularity-singularity sur-
(H—J)—2+Br4dr2+ r2dQ2. (35  faces(S9 begin at the singularity aligned with the null sur-
face, reach up towards the horizon, and then fall back, reach-
ing the singularity along the null cone. The horizon-horizon
surfaces (HH), which we have also dubbed “horizon-
2 6H2 hugging” surfaces, asymptote to the horizGn—2M for
CR=— §K2+ —. (36)  |t|]—oe in Schwarzschilyl dipping down towards the singu-

r larity in between. This feature was previously remarked upon
by Brill et al. [7]. The asymptotes converge toward a null
surface at the horizon. Finally, the horizon-singulafits)
surfaces begin at the horizon, and asymptote in to the singu-

These two expressions differ by the isometry of E8P).
Using Eq.(15) we can rewrite them in terms ¢f andK:

ds’=

From this we arrive at the scalar curvature of fsurface:

Similarly, by using Eqs(15) and (29), the extrinsic curva-
ture associated with observers moving on world lines or
thogonal to theK slices are also expressible in termskof

andH: larity. Representative surfaces for the valke=—0.1 are
shown in Fig. 2. We integrate the HH and HS surfaces across

1 2H the horizon into the region>2M by imposing continuity of
K§=§ K+ FEE (370  the surface and its first derivative at the horizon. Because of

the isometry, Eq(30), the surfaces outside of the horizon are
characteristically similar to those on the inside; in particular,

K — Eg (39) both sets are null at their asymptotes.
r We have chosen to use the acronym HH for the horizon-
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[ Past HS

B8 Past HH and SS FIG. 3. Phase space diagram

Future HH and SS of the classification oK surfaces.
The K surfaces have been classi-

[ Futre HS fied into three groups according to

their asymptotic behavior(see

text). Which class a particular sur-
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face falls into depends upon the
values ofK andH, as detailed in
the figure. For the purposes of nu-
merics, the surfaces of interest are
to be found in the “future HH and
SS” wedge, withK<0 (see Sec.
).

to-horizon hypersurfaces, in lieu of referring to them asgt, .
min

“regular” hypersurfaceg7], as each of the three types kf

)Rt =0

surfaces are, in a strict sense, regular. In particular, each

surface asymptotes to a null surface, be it at the singularity or (Rmin—2)| =3+ 2Rpmin+ KR, R 1}

the horizon. Observers on such a surface, or more precisely, — . M °>0. (42)
observers that are time synchronized throughout the surface, Riin

are never seen crossing the horizon, nor do they ever reach

the singularity! Outside the horizon, every HH and IS
surface K#0) asymptotes for large to null infinity. K
surfaces corresponding to positive valueKosymptote to

past null infinity, and asymptote to future null infinity for

K<O.
To gain a qualitative understanding of tKeconstant fo-

liation, it is useful to analyze Eq29) as an energy conser-

vation equation for a particle of unit total energiz€1)
moving in the potential

2M
(a2
V(r)=ﬁ. (39
(H—§Kr3>

The solution of these two conditions, as shown in Fig. 3,
gives rise to the emergence of two critical values Fr
namely H.., for a given value ofK. In addition, an HH
surface can be made to approach arbitrarily close to the sin-
gularity atr=0 by choosing an appropriately large positive
value ofK. Negative values ok tend to “hug the horizon.”

For fixedK andH we know how to compute how closely
a CMC surface comes to the singularity. But, for a given
value of K, what value ofH gives the closest overall ap-
proach to the singularity? We can determine the critical val-
ues forR and H, given by R, and H.., respectively, by
looking at the point where the first and second time deriva-
tives of R(t) vanish.H _ occurs along the lower boundary of
the contour plot in Fig. 3, and corresponds to Keurface
that reaches down the furthest towards the singularity for a

By using this energy equation we can determine the closesfiven value ofK. The vanishing oRR|z_, leads to the fol-

approach to the singularitR,,, of a given HHK-constant
surface. Two conditions must be satisfied to deternipg.

First, the closest approach occurs whén:(dydr)zo,
which is equivalent to demanding

V(Rmjn) =1. (40)
This condition leads to a sixth-order polynomial Ry, :

K2
—RS +R* —2

g ' ‘min min_

HK 3 2
M + T Rmin+ H<=0. (41)

Second, the solution for this surfaceRy(t i) =Rmin Mmust be
concave, so as to rule out the SS surfagelich bend to-
wards the singularity rather than the horizoithis is en-
forced by demanding

lowing equation forR,:

[2
—3+2R.+KR? R——l) =0, (43
C

which can be rewritten as a fourth order polynomiaRgn

(Rc_z)

K2RY—2K2R3+4R%— 12R,+9=0. (44)

One must take care in examining the roots of this equation,
as there are more solutions to E44) than there are for Eq.
(43). Nevertheless this equation gives two distinct real roots,
depending on the sign df:
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11 8 2 16 Jx
RlK 0:___\/3__2_X+—+ +—,
k=072 2 K W K&y 2
(45
1 1 8 2 16y
Relk<o=5+ 5 \/3—7—X+—+—+—,
k<072 " 2 K Y K2y 2
(46)
where
£=32+ 108K+ 243K *+27K?/16+ 56K >+ 81K,
(47)
8  16+36K* 2138
XEl_ W—’_ 3 21/3K2§1/3+ 3K2 . (48)

WhenK =0 we see from Eq43) thatR.=3. The regulaiK
surfaces are thus bounded between the horizdr, at 2M
andR_=R.M. Using Eq.(28), and settingR=0, we obtain,
for the case of a black hole in Schwarzschild coordinates

’ B.R2 KR: 9
c=—— :
with

B.= M 50

+— - R_t ( )
We therefore have

8
H+=§M3K. (51)

For large values oK| one can show that the critical value
of R, R_, depends upon the sign &f In particular,
1
2— gK*2 for K<—1,
R.— g 13 (52
(Z) K=23 for K>1.

This in turn gives the following asymptotic values fidy,,:

8
—§K—— for K<—1,
H_— _g (53
— for K>1
2K

IV. CONSTANT CRUNCH COORDINATES: A SPACE-
TIME METRIC FOR A K-SURFACE FOLIATION OF THE
SCHWARZSCHILD BLACK HOLE

PHYSICAL REVIEW D 63 064024

Critical Value of R

2 ﬁ
L5
~ 1
0.5
0
-10 -5 0 5 10
K

FIG. 4. Critical value of R.=R_ as a function ofK for
Schwarzschild coordinates ahli=1. One can readily see that the
K surface hugs the horizon for large negative valuek.of

tive for gravity wave extraction. Second, tKesurfaces natu-
rally avoid the crushing singularity. Finally, for large nega-
tive values ofK the surfaces “hug the horizon.” This last
feature, illustrated in Fig. 4, allows one to focus attention on
the region relevant for gravity wave generation—the region
outside the horizon.

In this section we generatekxconstant foliation for the
Schwarzschild black hole that, in addition to the properties
just mentioned, also has regular and static metric and extrin-
sic curvature components. To generate tisonstant slic-
ing we use the coordinate transformation

(54)
p=r. (55)

Under this transformation, the metric from Ed) becomes

2m\
ds?’=—| 1— —|dt?
P
(J-H) _
+2 dtdp
2M
(H=3)2+|1- —|p*
P
p4
+ dp?+p2dQ?% (56
oM petp (56)
(H=3)%+|1-—|p*
p

The constant slices of this metric ar&-constant surfaces. It
is to be noted that Eq56) agrees with Eq(53) of Iriondo
et al. (for the case of constamt and vacuum[2]. However,
in order to regularize thg,, metric component at the throat,
we add the isotropiclike radial transformatiphi],

1

_ 1
r=s| = 5Rmintp+t V=R +p°|,

2\ 2 67

with R, the minimum coordinate location of the throat,

A number of features of thK-constant surfaces presented given by Eq.(41). This coordinate representation of a black
in the previous sections seem particularly well suited to thénole spacetime provides a foliation withK-constant,
numerical analysis of generic black hole spacetimes. Firsti-constant spacelike hypersurfaces. Each hypersurface is
the surfaces asymptote to a null surface, making them effeanetrically equivalent to all others—the surfaces are indepen-
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Orr 0] of the extrinsic curvature tensét. Second, we require that
gg T 2 P such negativeK hypersurfaces enter the future singularity
16 \ _ 1? i i region. This will ensure proper coverage of the relevant re-
1§ i 1 08k i gion just above the future horizon, which is precisely where
AT 04 | 4 the gravity waves are produced. However, we expect the

initial-data formulation for such surfaces to be involved, and
this may guide our choices even more systemically. The two
additional requirements limit us to the relatively narrow
wedge of Fig. 3, formed by restricting to the “future HH and
SS” shaded region withK <0.

A representative constant-crunch foliation generated by
Eq. (56) is shown in Fig. 6. The avoidance of “grid stretch-
ing” is accomplished by a suitable choice of shift vector. To
illustrate the nonzero shift we show the= -1, H~—3.11
foliation of Schwarzschild in Fig. 7, with the explicit mis-
alignment of ther =const line segment and the normal vec-
tor.

Finally, we describe several preliminary numerical ex-
e periments using surfaces. A full treatment of a single black
1 10 hole usingK-constant foliations will be presented elsewhere

[1]. Here we present several sample evolutions demonstrat-

FIG. 5. The radial behavior of the various components of thejng the utility of constant mean curvature slicings. Figures 8

space-time metri€Eqg. (56)], under the isotropiclike transformation 54 9 display results from the simplest possible test of

given in Eq. (57), for M=1, K=-0.1, H=-1.0, andRyin  K-constant foliation of the Schwarzschild geometry; the do-
~0.479 22. From upper left to lower right we plot the radial metric main is taken to be a thin shell close to the horizonthis

component @), lapse @), radial shift ("), diagonal components  caser ¢ [1,5]), analytic Dirichlet conditions are applied at
of the extrinsic curvature tensdl([—andKZ—— K%), and in the lower  both boundaries of the computational domain, and analytic
lapse and shift conditions obtained from Es6) and (57)

. are used. The figures represent the singularity-avoiding folia-
+K~) as a consistency check. All of the functions are regular andjon K= —1 andH= — 3, for which the evolution was found
well behaved. The growth of the lapse and shift for large ex-  to be stable and accurate over very long time scales. Using
pected, as the surfaces become asymptotically null. We show agq grid points, the code successfully ran beyond
exploded view of the behavior of the radial shift near the throat to_— 59 ooy while maintaining high accuracy. The fractional
emphasize Eat the shift changes sign and becomes positive befoé‘f'ror in the metric components was typically 1—2 %.
reachingr = Rpyjs . Figure 8 shows the convergence of the mean fractional

B error in the metric componeat= \/g;+as a function of time.
dent oft, and hence static. In addition, the hypersurfaces ar&ach curve has been rescaled by a factor bf where the
asymptotically null[T'(r)—1 asr—c]. Furthermore, the number of grid points is given by 40®2with p=0,1,2,3.
lapse, the shift, and all of the 3-metric and extrinsic curvaturd-ort>2 the solution is approximately second order accurate.
components are regular and well behaved, as illustrated imitially, noise generated on the inner boundary causes fluc-
Fig. 5. tuations whose magnitude is largely independent of the num-

In addition to restricting ourselves to the singularity- ber of grid points. Figure 9 shows snapshots of the Hamil-
avoiding family (HH) of K surfaces, two additional condi- tonian constraint at various times in the evolution.
tions on theK surfaces are demanded by the nature of ouQualitatively, a wave which is triggered by truncation error
problem—the eventual simulation of the gravity-wave emis-is seen to propagate outwards from the inner boundary. The
sion from two interacting black holes. First, the foliations amplitude reduces rapidly, before growing once more as it is
must asymptote at large to future null infinity. Therefore reflected off the outer boundary. The magnitude and speed of
we must restrict our attention to negative values for the trac@ropagation of the wave quickly decay as the wave moves

right frame the trace of the extrinsic curvature tensKn:(K;r K%

Schwarzschild Kruskal-Szekeres

FIG. 6. The constant crunch coordinate folia-
tion of the Schwarzschild spacetime. We show
the foliation generated by E@56) for M=1, K
=-0.1, H=-1.25, and R,,~1.816, in
Schwarzschild and Kruskal-Szekeres coordinates.
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Schwarzschild
14

12

10
*
FIG. 7. The nonzero shift in
2 4 10 the constant-crunch coordination
r of the Schwarzschild spacetime.
We show a foliation generated
by Eg. (56) for M=1, K=-1,
H~-3.11, and R,,=1.9. We
show ther =const line segment at
a point on one of the surfaces, to-
gether with the inward-pointing
normal vector. The misalignment
of these two line segments indi-
cates the nonzero shift in this
static coordinatization. A magni-
fied view of the two line segments
is shown in the bottom panel.

o2}
o]

K-constant hypersurfaces

shift

r-constant line

back into the domain, leaving a static solution which is stablduture singularity region. However, we were unable to find
beyond t=5000M. The numerical error which initially an HH surface in the future singularity region that evolved
propagates through the domain is caused entirely by the angtably using the naive Dirichlet boundary conditions and
lytic Dirichlet boundary conditions, and can be largely elimi- analytic lapse and shift conditions. Nevertheless, we have
nated by the use of more realistic conditidiis. evolved such surfaces stably by incorporatidyarea lock-

The numerical runs presented here evolveKa —1 ing shift conditions(2) isometry conditions at the throat, and
singularity-avoiding hypersurface that asymptotes to null in{3) an outgoing boundary condition based on the difference
finity, entering the past singularity region. This is not of the between the numeric and analytic solutions. These numerical
class ofK surfaces emphasized in this paper for use in nuresults, and the corresponding stability analysis, are not
merical relativity. Ideally, we would have preferred present-within the scope of this paper and will be presented else-
ing the evolution of aK=—1 HH surface that enters the where[1].

0.01 T T T T

FIG. 8. A numerical example: convergence of
the radial metric component for the evolution of
an HH surface spanning the past singularity re-
gion and reaching positive null infinity. We show
the time evolution of a single black hole with
M=1,K=-1,H=-3, and plot the mean frac-
tional error in the radial metric componemat
=g+ Results are shown for four different reso-
lutions, N=400/2 (p=0,1,2,3), where each
4 curve has been rescaled by a factor 8f &ort
>2 the solution displays approximately second
order convergence, with a fractional error of
around 0.1% foN=200. Long term evolution is
stable, and the system has been successfully
evolved beyond =50 00(M.

0.001

89/ g

0.0001

1x10%8 1 1 1 1
0
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t=0.10 1=0.30 never “observe” the surfaces reach the singularity. This sug-
! T T - 1 - - - gests a possible payoff in using the HS surfaces in the evo-
05 . 05 . lution of black hole spacetimes, as there is no danger of the
0 0 {/—«'— surface reaching the singularity. Just as there are natural
o5 | 4 05 F i boundary conditions which “freeze out” gravitational radia-
- L L L A L L L tion as it progresses to null infinity, so too can we expect
1 2 3 4 5 1 2 3 4 5 boundary conditions where the dynamic space freezes out as
t=1.01 t=1.52 it approaches the singularity. Are there such natural bound-
1 T T - 1 - - - ary conditions at the future singularity? It would be worth-
05 1 05 1 while to investigate such asymptotically null boundary con-
If 0 1 ditions at the singularity of an HS surface.
-05 . 05 | The future utility of numerical simulations of black hole
1 L L - 4 - - - spacetimes hinges in large part on a suitable choice of coor-
o2 3 4 5 t 2 38 4 5 dinates for the initial data, and on the particular evolution of
t=3.13 1=10.0 these coordinates through the four lapse and shift conditions.
- - - - These conditions are the only handles by which to manage
05 K T 05 K T the growth of the metric and curvature components during
0 0 evolution. It is through judicious choices of lapse and shift
- 1 05| : that one is able to effectively enable singularity avoidance,
4 L L L A L L L and allow for efficient extraction of gravitational radiation.
o2 3 48 v 2 8 4 5 The simplistic example presented here may provide some
FIG. 9. Snapshots of the Hamiltonian constraint. For the Samgmdance_as to how t(_) proceed in the more general dase.
parameter choices as in Fig. 8 we display the Hamiltonian conSUrfaces in the generic two black hole problem can be ex-
straint during the early stages of evolution. A wave generated bP€cted to preserve the singularity-avoidance horizon hugging
truncation error at the inner boundary propagates outwards is re2€havior, as well as remain asymptotically null at the bound-
flected by the outer boundary back into the domain and then rapidiaries. It remains to be seen what shift vectors are required to
decays. No further evolution is seen in the Hamiltonian constrainfnanage the growth of the intrinsic and extrinsic properties of

aftert~5. the metric in the more general case, though the constant-
crunch shift presented here is a natural starting point.

V. FROM ONE BLACK HOLE TO TWO SPINNING BLACK We are currently pursuing three avenues towards further-

HOLES ing and generalizing the work presented here. First, we are

Enalyzing the stability of this coordinatization to small per-

In this paper we considered a static spacetime metric fo bati S q ina the+(1)-di ional
the Schwarzschild black hole, with spacelike hypersurface urbations. >econd, We are using et ).' imensiona
code discussed in the last section to examine a greater por-

of constant(not necessarily zejovalue of the trace of the on of th ¢ f initial dat i full
extrinsic curvature tensor. This slicing provides a naturalt of the parameler space of nitial data, so as 1o Iully
explore the numerical stability of the slicing. From our pre-

generalization of the maximal slicing scheme currently inl. X ical tioati t10 be able 1o d

use in some numerical approaches to the binary black holdnnary num.enc:i Inves |ge,1, lons, we expect 1o be able o do

problem. a full spacetime “evolution” of Schwarzschild, and have it
run stably and accurately for extended periods of time over a

An essential feature of oug-constant metric is a spatially wide ranae oMH-K ¢ Finall |
varying radial shift vector, which allows the surfaces to. 9 parameter space. Finally, we are analyz-

- : ; : ; . ; _ing the Oppenheimer-Snyder collapse in sicslicings, fol-
lems often encoLmtered. with other metrcs. Work 1 inloVing the fead of Eardiey and Smd8].as this wil urther
progress to develop a geometric handle on our shift condit®St our slicing in & nonstatic settiig2].
tion, akin to that of the “minimal distortion” shift often
discussed. The inner and outer boundary conditions are also
particularly convenient. In the inner regions, the horizon We wish to acknowledge the Los Alamos National Labo-
hugging feature of th& slices, together with their regularity, ratory LDRD/ER program for financial support. W.A.M.
may remove the need to excise the grid within the apparenwishes to thank the Institute for Theoretical Physics at UCSB
horizon, thus providing a natural “boundary without a for providing a stimulating working environment in which to
boundary” avoidance of the singularity. In addition, at the complete part of this research. D.E.H. was supported in part
outer boundary the surfaces are asymptotically null, whichby the National Science Foundation under Grant No.
may aid in gravity wave extraction. PHY9907949 to the ITP. P.L. was supported in part by NSF

In examining the characteristics of thé€ slices we re- grants PHY9800973 and PHY9800970. We wish to thank
viewed the three families oK surfaces, including the Richard Matzner for advice on handling the coordinate am-
horizon-to-singularityHS) surfaces, as well as the more fa- biguity at the throat, and Niall Murchadha and David
miliar horizon-to-horizonHH) and singularity-to-singularity Bernstein for useful discussions. We are especially grateful
(SS surfaces. All three families of surfaces either asymptotdo John A. Wheeler for encouraging us to examine these
to the singularity, or to spatial infinity along a null surface. slices in the context of the numerical treatment of black hole
Thus the family of observers that make up such a foliationspacetimes.
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